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Abstract 
Decentralized	 finance	 (DeFi)	 stablecoins	 have	 traditionally	 relied	 on	 over-collateralization	 or	 algorithmic	
seigniorage	mechanisms	to	maintain	a	$1	peg.	This	paper	presents	a	novel	minting	and	stabilization	framework	
leveraging	real-world	assets	(RWAs),	specifically	tokenized	fixed-income	instruments.	In	this	design,	the	principal	
component	is	stripped,	discounted,	and	locked	as	collateral	to	back	the	stablecoin,	while	the	coupon	payments	are	
issued	as	a	separate	yield-bearing	accumulating	token.	To	maintain	peg	stability	 for	the	stablecoin,	a	dynamic	
minting	interest	rate	is	introduced—rising	with	the	magnitude	and	optionally	the	velocity	of	price	deviation—to	
discourage	excess	issuance	during	downward	pressure.	Complementing	this,	a	burn	incentive,	also	driven	by	price	
deviation	and	optionally	its	derivative,	promotes	supply	contraction	when	the	stablecoin	trades	below	par.	These	
mechanisms	 constitute	 a	 fully	 on-chain,	 self-correcting	 stabilization	 system	 that	 functions	 independently	 of	
centralized	redemptions,	arbitrage	operations,	or	external	market	makers.	The	underlying	dynamic	and	incentive	
equations	 are	 formulated	 in	 a	 general	 parametric	 form,	 enabling	 flexible	 deployment	 and	 cost-efficient	
optimization	 via	 protocol	 governance.	 This	 architecture	 offers	 a	 transparent	 and	 adaptable	 foundation	 for	
maintaining	price	stability	across	diverse	market	conditions.	

 

1. Stripping Debt Products 

When	coupons	are	stripped	from	a	debt	product,	both	the	principal	(often	called	the	residual)	
and	the	individual	coupon	payments	are	issued	and	traded	at	a	discount.	The	coupons,	once	
separated,	become	zero-coupon	bonds	and	are	priced	at	a	discount,	while	the	principal	is	also	
priced	at	a	discount.	

All	strips,	principal	and	coupons,	are	discounted	based	on	time	to	maturity	and	they	share	
the	same	credit	risk	as	they	originate	from	the	same	issuer.	However,	in	practice,	the	principal	
strip	can	often	be	perceived	as	riskier	for	two	reasons:	(i)	as	it	has	the	longest	duration	(paid	
at	the	very	end),	(ii)	 if	default	occurs,	the	principal	payment	is	at	most	risk	since	coupons	
might	still	be	paid	before	the	event.	



As	a	result,	when	using	debt	products	as	reserves	for	minting	stablecoins	the	ideal	product	
would	be	a	daily	dealing	period	risk	free	asset,	such	as	money	market	instruments	(MMIs).	
However,	the	combined	effect	of	discounting	and	credit	risk	can	generally	be	captured	as	a	
"haircut"	applied	to	the	strips,	which	enables	longer	duration	and	risky	debt	products	to	be	
used	as	reserves	for	minting	stablecoins.	Such	a	haircut	model	would	also	enable	a	basket	of	
debt	products	of	different	durations	and	risk	profiles	to	be	used	as	reserves.	

	

2. Stripped Principal as Stablecoin Reserves 
 

2.1 Time	Discounting	

For	 an	 asset	with	maturity	𝑇 	years	 and	 a	 discount	 rate	𝑟 ,	 the	 time	 discount	 factor	 under	
continuous	compounding	is	given	by:	

𝐷(𝑇) 	= 	 𝑒!"# 	

This	factor	converts	the	par	value	(value	at	maturity)	to	its	present	value,	ignoring	credit	risk.	

2.2 Default	Risk	

Let	𝑃𝐷 	be	 the	 probability	 of	 default.	 The	 probability	 that	 the	 asset	 does	 not	 default	 i.e.	
survives,	is	given	by	𝑆:	

𝑆 = 1	 − 	𝑃𝐷	

If	default	occurs,	we	assume	for	this	work	the	asset	pays	nothing,	or	an	insignificantly	small	
recovery	value,	𝑅~0.	

2.3 Expected	Present	Value	and	Haircut	

The	expected	present	value,	𝐸𝑃𝑉,	of	a	unit	strip	is:	

𝐸𝑃𝑉	 = 	𝑆		𝐷(𝑀) 	= 	 (1	 − 	𝑃𝐷)		𝑒!"# 	

Where	𝑃𝐷	can	also	be	written	in	terms	of	the	credit	spread,	𝑠,	of	the	debt	product,	keeping	
recovery	in	case	of	default	being	𝑅~0:	

1 − 𝑃𝐷	(1 − 𝑅) = 1 − 𝑃𝐷 =	𝑒!$# 	

Therefore,	𝐸𝑃𝑉	can	also	be	written	as:	

𝐸𝑃𝑉 = 𝑒!("&$)# 	

The	haircut,	𝐻,	applied	to	a	unit	strip	can	also	be	written	as:	

𝐻 = 1 − 𝐸𝑃𝑉 = 1 − 𝑒!("&$)# = 1 − (1 − 𝑃𝐷)	𝑒!"# 	



Example:	

For	𝑇	 = 	1	year,	𝑟	 = 	5%,	and	𝑃𝐷	 = 	10%:	

𝐷(1) = 	 𝑒!(.(* ≈ 	0.9512,	

𝐸𝑃𝑉	 ≈ (1 − 0.1)	0.9512	 ≈ 	0.8561,	

ℎ	 ≈ 	1	 − 	0.8561	 ≈ 	0.1439	(𝑜𝑟	𝑎𝑏𝑜𝑢𝑡	14.4%).	

	

2.4 Basket	of	Assets	and	the	Optimal	Haircut	

When using a basket of debt assets as reserves for minting each asset 𝑖 may have its own maturity 
𝑇+ and probability of default 𝑃𝐷+. We assume that each asset has a par value of $1 and appears in 
the portfolio with a weight 𝑤+, where∑ 𝑤++ 	= 1	. 

For asset 𝑖 the expected present value is: 

𝐸𝑃𝑉+ 	= 	 (1	 −	𝑃𝐷+)		𝑒!"#! 	

Then the overall expected present value is the weighted sum: 

𝐸𝑃𝑉,-"./-0+- 	= I𝑤+
+

	(1	 −	𝑃𝐷+)		𝑒!"#! 	

Accordingly,	the	average	portfolio	haircut	is	defined	as:	

ℎ,-"./-0+- 	= 1 − 𝐸𝑃𝑉,-"./-0+- = 1 −I𝑤+
+

	(1	 −	𝑃𝐷+)		𝑒!"#! 	

	
2.5 		Principal	and	Coupon	Stripping	Protocol	

A	user	can	buy	a	money	market	RWA	instrument	and	lock	it	into	an	onchain	protocol.	Then	
using	the	above-mentioned	coupon	stripping	mechanism,	the	principal	and	coupons	can	be	
split	and	locked	into	separate	pools,	where	each	pool	would	have	its	own	LP	(Liquidity	Pool)	
token.	This	enables	the	user	to	burn	the	LP	token	and	release	the	principle	and	coupon	strips	
and	unlock	the	underlying	money	market	instrument.		

While	 the	 stripped	principal	 LP	 tokens	 can	be	 transferred	 freely,	 the	 stripped	 coupon	LP	
tokens	would	only	be	transferable	to	addresses	that	were	whitelisted	to	hold	the	underlying	
money	market	RWA	assets	i.e.	the	coupon	LP	tokens	would	be	treated	like	securities.								

2.6 		Stablecoin	Backed	by	Stripped	Principals	

If	we	have	a	pool	of	striped	money	market	instrument	residuals	the	ownership	of	this	pool	
can	then	be	divided	into	tokenized	units	i.e.	the	LP	tokens	of	the	principal	pool.	Therefore,	we	



can	define	a	single	LP	token	of	this	pool	as	having	an	𝐸𝑃𝑉	of	$1.	In	this	way	tokenized	money	
market	stripped	residuals	collected	in	the	pool	form	the	backing	of	an	RWA	stablecoin.	

The	advantage	of	this	model	is	that	the	holder	of	a	money	market	instrument	can	easily	mint	
a	stablecoin	in	a	permissionless	manner	and	use	the	stablecoin	as	a	medium	of	exchange.	But	
at	the	same	time,	they	can	retain	their	yield	through	controlling	the	LP	token	for	the	coupon	
residual	pool.	This	structure	also	enables	any	yield	bearing	asset	 to	be	used	for	minting	a	
stablecoin,	and	the	minter	is	then	able	to	retain	and	control	their	accrued	returns,	but	at	the	
same	time	use	a	stable	standard	coin	to	make	payments.			

2.7 		Positive	Price	Deviations	of	the	Stablecoin:	𝑷 > $𝟏	

Even	though	each	stablecoin	token	is	backed	by	$1	of	MMIs	(or	similar),	with	an	appropriate	
haircut,	the	value	of	the	token	may	deviate	from	$1	depending	on	market	depth	and	supply	
and	demand.	

If	 the	 token	 price	 is	 greater	 than	 a	 dollar	 in	 the	market,	𝑃 > $1,	 such	 a	 deviation	 can	 be	
corrected	even	in	shallow	markets	as	any	individual	can	buy	MMIs	to	mint	stablecoins	and	
sell	 the	 stablecoin	 in	 the	 market	 to	 bring	 the	 price	 down.	 Such	+𝑣𝑒 	deviation	 arbitrage	
opportunities	could	be	quickly	closed	as	the	market	would	be	open	to	any	user.			

2.8 Negative	Price	Deviations	of	the	Stablecoin:	𝑷 < $𝟏	

When	the	stablecoin	price	falls	below	its	$1	peg	i.e.	𝑃 < $1,	 the	consequences	can	become	
more	 nuanced	 and	 systemically	 destabilizing.	 In	 a	 steady-state	 scenario	 –	 where	 the	
stablecoin	is	widely	adopted,	liquid,	and	listed	across	centralized	and	decentralized	venues	–	
rational	 arbitrageurs	 (especially	 original	 minters)	 can	 purchase	 underpriced	 stablecoins	
from	the	market,	burn	them	to	unlock	their	collateralized	MMIs,	and	then	sell	those	MMIs	at	
or	near	par	($1),	thereby	closing	the	arbitrage	loop.	

However,	this	arbitrage	mechanism	is	largely	accessible	only	to	those	who	hold	the	residual	
vault	LP	token,	i.e.,	the	original	minters.	General	users	without	this	claim	cannot	access	the	
underlying	collateral,	which	 limits	broad-based	arbitrage	participation	and	makes	the	peg	
recovery	path	more	fragile	during	market	stress.	

A	particularly	dangerous	and	perverse	feedback	loop	can	emerge	when	users	exploit	short-
term	liquidity	needs	and	pricing	inefficiencies:	

2.9 Looping-Induced	Depeg	Risk	

A	particularly	dangerous	and	perverse	feedback	loop	can	arise	when	users	exploit	a	short-
term	profit	opportunity	that	persists	even	when	the	stablecoin	is	consistently	sold	below	its	
peg.	By	repeatedly	cycling	the	position	—	minting	the	stablecoin,	selling	it	at	a	discount,	using	
proceeds	 to	mint	more,	 and	 eventually	 repurchasing	 enough	 to	 unlock	 their	 collateral	—	
users	can	earn	a	net	positive	yield	regardless	of	market	price	deviations.	This	creates	a	strong	
incentive	to	loop	the	process:	



• Each	cycle	increases	stablecoin	supply.	
• Selling	pressure	further	depresses	stablecoin	price.	
• Lower	market	price	doesn’t	directly	impact	short	term	profits	from	minting/looping.	

This	 leads	 to	 self-reinforcing	 negative	 deviations,	 increasing	 volatility	 and	 the	 risk	 of	 a	
cascading	depeg.	The	situation	becomes	more	severe	 in	 illiquid	market	 conditions,	where	
repeated	 discounted	 sales	 have	 outsized	 price	 impact,	 and	 where	 market	 makers	 are	
unwilling	or	unable	 to	arbitrage	due	 to	 lack	of	LP	access,	uncertainty,	or	high	 transaction	
costs.	An	illustrative	example	of	this	scenario	is	as	follows:	

• User	mints	stablecoin:	
o Deposits:	$100,000	of	MMIs	into	vault	
o Haircut:	10%	gives	minting	capacity	of	$90,000	stablecoin	
o Sells	stablecoin	below	market	price:	$0.95,	receiving	$85,500	
o Cash	outlay:	$14,500	

• User	unwinds	position:	
o Buys	$90,000	stablecoin	in	the	market	at	$1	
o Unlocks	$100,000	MMIs	and	sells	in	the	market	
o Haircut:	$10,000	(at	10%)	minus	fees	returned	
o Receives	interest	earned	on	locked	deposit:	$5,000	annualized	(5%)	
o Cash	received:	$15,000	
o Net	Profit:	$500	

Even	though	the	stablecoin	is	sold	at	a	discount,	the	total	returns	(including	interest)	exceed	
the	 user’s	 net	 outlay.	 This	 structural	 profit	 opportunity,	 if	 unaddressed,	 can	 cause	 a	
breakdown	in	peg	stability.	

The	rest	of	this	work	provides	an	overview	of	an	automated	onchain	pegging	mechanism	that	
incentivizes	the	appropriate	behaviors	for	the	stablecoin	peg	to	be	maintained	when	price	of	
the	stablecoin	deviates	from	$1.	

	

3. Pegging	Mechanism	Basics	
	

3.1 Setup	of	the	Problem	and	Solution	

Let	the	market	price	of	the	stablecoin	at	time	𝑡	be	𝑃(𝑡),	and	define	the	price	deviation	from	
the	peg	as:	

𝑥(𝑡) 	= 	𝑃(𝑡) 	− 	1	

Where:	

• 𝑥(𝑡) = 	+0.05	𝑚𝑒𝑎𝑛𝑠	𝑃(𝑡) = $1.05	(positive	deviation),	
• 𝑥(𝑡) = 	−0.05	𝑚𝑒𝑎𝑛𝑠𝑃(𝑡) = $0.95	(negative	deviation).	



The	 deviation	 𝑥(𝑡) 	is	 the	 core	 signal	 around	 which	 minting	 incentives	 and	 corrective	
mechanisms	will	be	established.	

In	the	absence	of	an	immediate	redemption	mechanism	with	the	issuer:	

• When	𝑥(𝑡) 	< 	0:	Users	can	buy	stablecoin	below	$1,	but	cannot	easily	redeem	it	for	
$1	of	collateral,	unless	they	own	the	coupon	LP	token,	making	arbitrage	difficult.	This	
weakens	the	correction	for	negative	deviations.	

• When	𝑥(𝑡) 	> 	0:	Users	are	strongly	incentivized	to	mint,	since	any	user	can	issue	a	
stablecoin	 at	 par	($1) 	and	 sell	 above	($𝑃(𝑡) 	> 	1$) ,	 which	 increases	 supply	 and	
pushes	the	price	back	toward	the	peg.	

This	creates	an	asymmetry:	

• Undersupply	(𝑥	 > 	0):	Easy	to	correct	(users	mint	and	sell).	
• Oversupply	(𝑥	 < 	0):	Hard	to	correct	(users	can’t	easily	redeem).	

	

Thus,	persistent	negative	deviations	are	 the	greater	systemic	risk	—	especially	 in	 looping	
dynamics	—	as	shown	earlier.	

3.2 Proposed	Peg-Stabilization	via	Minting	Interest	Rate	and	Burn	Incentive	

To	mitigate	depeg	risks	—	particularly	when	the	stablecoin	trades	below	the	peg	(𝑥(𝑡) 	< 	0)	
—	we	 introduce	 a	minting	 interest	 rate,	𝑟 ,	 which	 acts	 as	 a	 cost	 incurred	 by	 users	 when	
minting	new	stablecoins.	This	interest	rate	is	designed	to	dynamically	respond	to	both	the	
magnitude	and	the	momentum	of	price	deviations	from	the	peg,	providing	a	self-regulating	
mechanism	for	supply	expansion	and	contraction.	

The	interest	rate	𝑟	can	be	modeled	as	a	function	of	deviation	and	its	velocity:	

𝑟	 = 	𝑟(𝑥, 𝑥̇)	

Where		

𝑥(𝑡) = 𝑃(𝑡) − 1	is	the	deviation	from	the	$1	peg,	

𝑥̇ 	= 12
1.
	captures	the	speed	of	deviation	i.e.	how	fast	the	price	is	moving	away	from	the	peg.		

3.2.1 Oversupply	Regime	(𝒙(𝒕) 	< 	𝟎)	

When	the	stablecoin	trades	below	peg:	

• Users	are	disincentivized	to	mint	further.	
• The	minting	rate	𝑟(𝑥, 𝑥̇)	increases	as:	

o The	deviation	|𝑥|	becomes	larger,	
o The	rate	of	downward	movement	𝑥̇ 	< 	0	accelerates.	



• This	makes	minting	increasingly	costly,	dampening	excess	supply.	
• As	well	as	increase	rate	for	minting,	the	rate	should	also	provide	burn	incentive.	

A	burn	incentive	𝑏 = 𝑏(𝑟(𝑥, 𝑥̇))	will	be	used	to	incentivize	users	to	burn	supply.		

• While	the	minting	rate	discourages	new	issuance,	it	does	not	directly	reduce	existing	
supply.		

• To	address	this,	the	same	interest	rate	function	𝑟(𝑥, 𝑥̇)	can	be	repurposed	as	a	burn	
incentive,	𝑏,	—	for	example,	by	reducing	burn	fees	or	haircut	penalties	when	users	
burn	stablecoins.		

• This	incentive	should	increase	as	the	negative	deviation	grows,	i.e.,	the	further	below	
peg	the	price	falls,	the	greater	the	reward	for	burning.		

• This	 aligns	 incentives	 to	 reduce	 circulating	 supply	 and	 accelerates	 peg	 recovery	
during	depeg	events.	

Formally:	
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3.2.2 Undersupply	Regime	(𝒙(𝒕) > 	𝟎)	

When	the	stablecoin	trades	above	peg:	

• Users	should	be	incentivized	to	mint	to	bring	price	down.	
• The	interest	rate	𝑟	can	be	reduced	as	𝑥	increases	which	makes	minting	cheaper	when	

the	stablecoin	is	scarce	and	expensive.	
• In	some	cases,	𝑟	may	become	negative	i.e.,	a	minting	rebate,	effectively	reducing	or	

offsetting	fees	like	haircuts	to	encourage	issuance.	
• Market	 dynamics	 already	 favor	 minting	 to	 overcome	 undersupply	 so	 increased	

velocity	sensitivity	to	deviation	may	not	be	necessary.	

Formally:	
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>0			for	𝑥 < 0		

By	embedding	the	interest	rate	function	directly	into	both	the	minting	and	burning	processes,	
the	mechanism	symmetrically	addresses	deviations	on	both	sides	of	the	peg.	This	creates	a	
self-contained	and	responsive	stabilizing	system	that	dynamically	adjusts	supply	incentives	
and	disincentives,	without	relying	on	external	redemption	or	arbitrage	mechanisms.	

	

4. Stablecoin	and	Pegging	Model	Setup		
	

4.1 Key Features in Stablecoin Charts and Their Implications 



The	chart	in	Figures	1a	and	1b	show	that	the	price	deviations	of	USDC	and	USDT	from	their	
$1	peg	are	not	well	described	by	simple	random	walk	behavior	or	linear	mean-reversion,	as	
might	 be	 modeled	 by	 a	 basic	 Ornstein–Uhlenbeck	 (OU)	 process.	 Instead,	 the	 observed	
dynamics	 are	oscillatory,	 nonlinear,	 and	occasionally	disrupted	by	 sharp	negative	 shocks.	
These	characteristics	point	to	a	more	realistic	and	flexible	modeling	framework:	a	second-
order	 stochastic	 differential	 equation	 (SDE)	 augmented	 with	 a	 shock	 term.	 This	 class	 of	
models	better	captures	the	momentum-driven	dynamics,	delayed	responses,	and	impact	of	
rare	but	severe	market	events.	

 

Figure.	1a:	Timeseries	of	USDC	and	USDT	over	a	24	hour	period.	

	

Figure.	1b:	Timeseries	of	USDC	and	USDT	over	a	one-month	period.	

	

4.1.1 Oscillations	and	Noise	

The	price	trajectories	of	both	USDC	and	USDT	exhibit	quasi-periodic	oscillations	around	the	
peg,	overlaid	with	stochastic	noise.	These	oscillations	are	not	purely	random—they	display	
structure	and	inertia,	indicating	that	the	system	exhibits	delayed	corrective	behavior	rather	
than	immediate	mean-reversion.		This	behavior	is	incompatible	with	first-order	systems	(like	
OU),	which	assume	a	memoryless,	frictionless	path	back	to	equilibrium.	In	contrast,	second-
order	systems	incorporate	momentum	(through	second	derivatives)	and	capture	oscillatory	
trajectories,	for	example	via	the	characteristic	equation	of	underdamped	dynamics:	

𝑥̈(𝑡) + 𝛾 · 𝑥̇(𝑡) + 𝜅 · 𝑥(𝑡) = 𝑛𝑜𝑖𝑠𝑒	



Where	𝑥(𝑡)	is	 the	deviation	 from	 the	peg,	where	𝛾	is	 the	damping	 coefficient,	 and	𝜅	is	 the	
restoring	force.		

𝑛𝑜𝑖𝑠𝑒 = 𝜎 · 𝜉(𝑡)	

Where	𝜉(𝑡)	is	Gaussian	white	noise	and	𝜎	is	the	volatility	factor	that	scales	the	noise			

4.1.2 Overshoot	and	Undershoot	

In	practice,	stablecoins	often	overshoot	the	peg	after	an	initial	deviation	and	then	return	from	
the	other	side—a	hallmark	of	an	underdamped	second-order	system.	This	dynamic	reflects	
lag	in	correction	mechanisms	(e.g.,	arbitrage	latency,	protocol	reaction	delay)	and	suggests	
the	system	has	internal	memory	and	inertia.	The	presence	of	these	cycles	directly	contradicts	
the	behavior	expected	in	first-order	models,	which	lack	such	overshooting	by	construction.	

4.1.3 Nonlinearity		

The	 amplitude	 and	 damping	 of	 the	 oscillations	 in	 the	 chart	 are	 not	 constant,	 suggesting	
nonlinear	system	dynamics.	In	particular:	

• The	 restoring	 force	 (e.g.,	 burn/mint	 incentive)	 likely	 increases	 nonlinearly	 with	
deviation	magnitude.	

• The	damping	may	also	vary	with	the	speed	of	price	change	or	available	liquidity.	

These	 effects	 imply	 that	 the	 SDE	 coefficients—restoration	 and	 damping—must	 be	 state-
dependent	functions,	such	as:	

𝑥̈(𝑡) + 𝛾 · (𝑥, 𝑥̇) · 𝑥̇(𝑡) + 𝜅(𝑥) · 𝑥(𝑡) = 𝜎 · 𝜉(𝑡)	

where	𝛾(𝑥, 𝑥̇) 	and	𝜅(𝑥) 	capture	 nonlinear	 damping	 and	 recovery	 incentives	 respectively.	
This	 structure	 aligns	with	 real-world	 stablecoin	models	 that	 apply	 stronger	burn	or	mint	
incentives	as	the	deviation	increases,	or	that	respond	differently	depending	on	whether	the	
coin	is	above	or	below	the	peg.	

4.1.4 Sudden	Negative	Shocks	

Occasional	sharp	price	drops	(negative	spikes)	are	visible	for	both	USDC	and	USDT.	These	are	
not	 easily	 explained	 by	 endogenous	 dynamics	 alone	 i.e.	 they	 cannot	 be	 derived	 from	 the	
system’s	internal	feedback	rules.	Rather,	they	point	to	exogenous	shocks	such	as:	

• Large	liquidations	
• Market-wide	panic	events	
• Loss	of	confidence	in	a	stablecoin	issuer	
• Sudden	withdrawal	of	liquidity	

To	model	 these	events	 realistically,	one	must	 extend	 the	SDE	with	a	 jump	or	 shock	 term,	
typically	represented	as:	



𝐽(𝑡) =I∆+ · 𝛿(𝑡 − 𝑡+)
+

	

Where	∆+ 	are	the	shock	magnitudes	and	𝑡+ 	the	times	at	which	they	occur.	These	shocks	can	be	
modeled	 as	 a	 compound	 Poisson	 process	 or	 embedded	 in	 a	 jump-diffusion	 framework,	
depending	on	the	frequency	and	statistical	structure	of	the	events.	

4.2 Second	Order	Non-linear	Ornstein–Uhlenbeck	Equation 

The	combined	characteristics	of	oscillatory	behavior,	overshoot,	nonlinear	corrections,	and	
discrete	 external	 shocks	makes	 a	 strong	 case	 for	modeling	 stablecoin	 deviations	 and	 the	
pegging	 mechanisms	 using	 a	 second-order	 nonlinear	 Orsetein-Ulhenbeck	 SDE	 with	 an	
exogenous	 jump	term.	As	described	previously,	 this	approach	better	aligns	with	observed	
behaviors	 and	 provides	 a	 robust	 framework	 for	 simulating	 and	 designing	 stabilization	
mechanisms	for	a	stablecoin.		

Such	 a	 second	 order	 model	 would	 be	 an	 extension	 of	 the	 standard	 Ornstein-Uhlenbeck,	
equation:	

𝑑𝑥(𝑡) = −𝜅 · (µ − 𝑥(𝑡)) 𝑑𝑡 + 𝜎 · 𝜉(𝑡) 	

Where	𝜇	is	the	long	term	mean	and	can	be	set	to	zero	for	our	case	of	zero	deviation	from	the	
peg.	The	second	order	form	of	this	can	be	written	as	a	system	of	two	coupled	SDE,	and	by	
adding	the	damping	and	the	shocks	terms	we	have	a	type	of	Mixed	Orstein-Uhelenbeck	(MOU)	
process:	

		
𝑑𝑥(𝑡) = V(𝑡) 𝑑𝑡	

𝑑𝑉(𝑡) = −𝛾 · 𝑉(𝑡) − 𝜅 · 𝑥(𝑡) 𝑑𝑡 + 𝜎 · 𝜉(𝑡)  + 𝛥+ · 𝛿(𝑡 − 𝑡+)	

In	essence,	the	second-order	Ornstein-Uhlenbeck	process	with	the	damping	and	shocks	offers	
a	more	nuanced	and	flexible	way	to	model	a	stochastic	system	that	exhibit	mean	reversion	
and	more	complex	local	dynamics	than	the	first-order	OU	process	can	provide.	The	Langevin	
equation		form	of	the	MOU	process	provides	the	most	intuitive	form	of	the	model,	which	also	
provides	 insights	 into	 market	 characteristics	 and	 the	 pegging	 mechanism	 underpinning	
stablecoin	behavior:	

𝑥̈(𝑡) = −𝛾(𝑥, 𝑥̇) · 𝑥̇(𝑡) − 𝜅(𝑥) · 𝑥(𝑡) 𝑑𝑡 + 𝜎 · 𝜉(𝑡)  +I𝛥+ · 𝛿(𝑡 − 𝑡+)
+

	

This	second	order	Langevin	equation	enables:	

• Random	noise	with	mean-reverting	(OU-like)	behavior	—	pulling	deviations	back	to	
the	peg,	and	

• Second-order	 inertial	 dynamics	 —	 accounting	 for	 momentum,	 overshooting,	 and	
oscillations,	and	



• Nonlinear	damping	and	random	shock	terms.	

This	 creates	 a	 more	 realistic	 model	 for	 pegged	 assets	 like	 stablecoins,	 especially	 when	
deviations	show	inertia	and	shocks	as	seen	in	the	chart	of	USDC	and	USDT.	

	

5. Stablecoin	Price	Deviation	Framework	and	Simulation	
	

5.1 Simple	Harmonic	Oscillator	Framework		

Using	the	general	Langevin	form	of	the	model	we	can	consider	deviations	of	a	stablecoin's	
market	price	from	its	peg	as	a	second-order	stochastic	system	akin	to	a	damped	harmonic	
oscillator	SHO	with	both	continuous	gaussian	noise	and	discrete	external	shocks.	This	SHO	
framework	provide	 a	 simple	mental	model	 on	how	 to	 think	 about	 the	 complex	dynamics	
observed	in	stablecoin	markets,	and	what	an	appropriate	pegging	mechanism	would	entail:	

• Stablecoin	Peg	=	Equilibrium:		
o The	 peg,	 or	 zero	 deviation	 (e.g.	𝑥(𝑡) = 	𝑃(𝑡) − 	1 = 0 ),	 is	 the	 equilibrium	

position	of	the	SHO.		
• Deviation	from	Peg	=	Displacement	from	Equilibrium:		

o A	 movement	 in	 the	 stablecoin’s	 price	 away	 from	 the	 peg	 is	 analogous	 to	
displacing	the	SHO	from	rest.		

o This	displacement	sets	off	a	corrective	process	—	a	dynamic	push	to	return	to	
equilibrium.	

• Arbitrage	&	Market	Incentives	=	Nonlinear	Restoring	Force:	
o Market	forces,	especially	arbitrage	incentives	and	protocol-based	corrections	

(e.g.,	buybacks,	redemption	mechanisms),	act	like	the	restoring	spring	force	
in	a	harmonic	oscillator:	

o 𝐹"6$.-"+78 = −𝜅(𝑥) ∙ 	𝑥(𝑡)	
o This	force	grows	as	the	deviation	increases,	and	its	magnitude	and	structure	

can	be	tuned	via	an	automated	policy	that	is	a	function	of	deviation	e.g.	burn	
incentives.		

• Minting	Interest	Rate	=	Nonlinear	Damping:	
o Protocol-level	 controls,	 particularly	 interest	 rate	 adjustments	 and	 supply	

incentives,	function	as	nonlinear	damping	and	restoring	mechanisms.		
o These	 dynamically	 respond	 to	 both	 the	 direction	 and	 magnitude	 of	 price	

deviation	
o When	 price	 falls	 below	 the	 peg,	 a	 higher	 minting	 fee	 discourages	 further	

expansion	of	supply.	
o This	slows	the	downward	momentum,	analogous	to	damping	increasing	with	

speed	or	direction:	
o 𝐹19:,+78 = −𝛾(𝑥, 𝑥̇) ∙ 	 𝑥̇(𝑡)	

• Gaussian	Market	Noise	=	Stochastic	Force:	



o Day-to-day	fluctuations	due	to	liquidity	changes,	order	book	dynamics,	and	
random	trades	introduce	white	noise	into	the	system.	This	is	modeled	via	the	
stochastic	forcing	term:	

o 𝐹7-+$6 = 𝜎 · 𝜉(𝑡)	

o This	 component	drives	minor	perturbations	even	when	 the	system	 is	near	
equilibrium.	

• Exogenous	Market	Shocks	=	Discrete	Impulse	Forces:	

o Sudden,	large-scale	deviations	(e.g.,	redemptions,	regulatory	actions,	liquidity	
collapses)	correspond	to	impulse	forces	in	the	SHO	system:	

o 𝐹+:,;0$6 = ∑ 𝛥+ · 𝛿(𝑡 − 𝑡+)+ 		

o These	 are	 discontinuous	 inputs	 that	 cannot	 be	 explained	 by	 endogenous	
dynamics	and	must	be	explicitly	modeled	as	shock	terms.	

	

5.2 Generalized	Governing	Equation	within	the	SHO	Framework	
	

5.2.1 Generalized	Governing	Equation	

A	general	form	of	the	governing	equation	for	the	price	deviation	𝑥(𝑡) = 𝑃(𝑡) − 1	is	given	by	
the	following	equation:	

𝑥̈(𝑡) + k𝑐( + 𝑐<m𝑒="|2(.)| − 𝑐?n + 𝑐@ ∙ 𝑥(𝑡)o ∙ 𝑥̇(𝑡) + (𝑎( + 𝑎< ∙ 𝑥(𝑡)) ∙ 𝑥(𝑡)

= 𝜎 · 𝜉(𝑡) +I∆+
+

∙ 𝛿(𝑡 − 𝑡+)	

Where:	

• 𝑥̈(𝑡):	acceleration	of	peg	(second	derivative	of	deviation)	

• 𝑥̇(𝑡):	velocity	of	peg	(rate	of	change	of	deviation)	

• 𝜉(𝑡):	Gaussian	white	noise	

• 𝛿(𝑡 − 𝑡+):	Dirac	delta	function	at	discrete	shock	times	

• 𝑐(, 𝑐<, 𝑐A, 𝑐?, 𝑐@:	Damping	coefficients	to	generalize	the	nonlinear	damping	term		

• 𝑎(, 𝑎<:	Restoring	coefficients	to	generalize	the	nonlinear	restoring	term			

	

5.2.2 Minting	Interest	Rate	𝒓mint(𝒙, 𝒙̇)	



Using	 the	 generalized	 damping	 term	 and	 a	 contribution	 from	 the	 restoring	 force,	we	 can	
formulate	a	Minting	Interest	Rate,	𝒓mint(𝒙, 𝒙̇),	which	would	penalize	or	incentivise	minting	
depending	on	the	deviation	from	the	peg:	

𝑟mint(𝑥, 𝑥̇) = ~
𝑟0+(𝜆1 · 𝐷(𝑥, 𝑥̇) + 𝜆" · 𝑅(𝑥)),																				𝑥 < 0
𝑟0 − (𝜆1 · 𝐷(𝑥, 𝑥̇) + 𝜆" · 𝑅(𝑥)),																			𝑥 > 0
0,																																																																										𝑥 = 0

	

Where:	

𝑟(,	is	the	base	interest	rate	for	minting	when	price	is	close	to	the	peg;	and	

𝐷(𝑥, 𝑥̇) = k𝑐( + 𝑐<m𝑒="|2| − 𝑐?n + 𝑐@𝑥o · |𝑥̇|	

is	the	contribution	to	the	minting	rate	from	the	velocity	(rate	of	change)	of	deviation;	and		

𝑅(𝑥) = 𝑎( · |𝑥|	

is	the	contribution	to	the	minting	rate	from	the	restoring	force	and	is	related	to	deviation	
only.	Finally,	the	𝜆1 , 𝜆" 	are	scaling	parameters	to	align	the	damping	and	restoring	forces	to	be	
calibrated	to	an	appropriate	interest	rate.	

This	minting	rate	would	drive	the	following	behavior:	

Deviation	 Rate	Direction	 Behavior	

𝑥 < 0	 Positive	 Interest	rate	increase	slowly	near	the	peg	and	strongly	further	
away,	thus	discourages	minting	below	peg	

𝑥 > 0	 Negative	 Interest	rate	decreases	above	 the	peg,	slowly	close	 to	 the	peg	
and	then	moves	faster	to	the	minimum	further	above	the	peg	

𝑥 = 0	 Zero	 Neutral	(at	peg)	

 
5.2.3 Burning	Incentive	Rate	𝒓burn(𝒙)	

Using	 the	generalized	restoring	 term	we	can	 formulate	a	burning	 incentive	rate,	𝒓𝒃𝒖𝒓𝒏(𝒙),	
which	would	reward	burning	supply	i.e.	this	incentive	could	be	returned	to	the	user	from	the	
haircut	and	other	fees	to	encourage	minters	to	burn	their	holding	and	make	a	higher	return.	
This	burn	incentive	would	need	to	be	a	gentle	rewarding	mechanism	that	does	not	result	in	
aggressive	 overshoot,	 as	 such	 having	 a	 simple	 linear	 dependence	 on	 deviation	would	 be	
sufficient.		

𝑟burn(𝑥) = �𝛽 · 𝑎< · 𝑥
A,					𝑥 < 0

0,																				𝑥 ≥ 0 		



Where	(𝑎< ∙ 𝑥) ∙ 𝑥	is	 the	restoring	 force	contribution	 to	 the	burn	 incentive	and	 the	𝛽	is	 the	
scaling	factor	to	calibrate	the	rate	to	align	with	appropriate	levels.	

	

Deviation	 Rate	Direction	 Behavior	

𝑥 < 0	 Positive	
Interest	rate	incentive	will	increase	linearly	as	peg	deviates	
below	zero,	which	will	increase	incentive	rate	rebate	paid	back	
to	minter	to	burn	stablecoins.	

𝑥 ≥ 0	 Zero	

Interest	rate	incentive	will	be	zero,	so	users	wont	be	provided	
with	an	incentive	not	to	burn,	and	deviations	in	the	positive	
direction	will	just	be	managed	through	the	natural	arbitrage	
incentive	provided	through	the	restoring	force	i.e.	lower	
minting	rate	above.		

 
5.3 Simulation	Configuration	

Parameter	 Value	

Damping	Coefficients	𝑐(, 𝑐<, 𝑐A, 𝑐?, 𝑐@	

𝑐( = 20, 𝑐< = 15, 𝑐A = 1, 𝑐? = 1, 𝑐@ = 10		
	
𝑐A	and	𝑐?	are	set	to	1	to	ensure	that	the	
interest	rate	does	not	change	too	much	for	
small	deviations	

Restoring	Force	𝑎(	 30	

Burn	Coefficient	𝑎<	 0.5	

Damping	contribution	scaling	weight	
𝜆1 	

	
𝜆1 = 0.01:	

Restoring	contribution	scaling	weight	
𝜆" 	

𝜆" = 0.005	

Burn	Incentive	Scaling	weight	𝛽	 𝛽 = 0.2	

Noise	Magnitude	𝜎	 0.10	

Shock	Magnitude	∆+ 	 -5	

Shock	Times	𝑡+ 	 5	random	times	between	1	and	59	units	

Initial	Conditions	 𝑥(0) = 0,			𝑥̇(0) = 0	

Simulation	Duration	 60	units	



Time	Step	 0.01	(6000	over	60	units)	

ODE	Solver	 RK45	(Runge-Kutta	method)	
	

6. Generalized	Equation	Simulation	
	

6.1 Results	

Figure	2	below	shows	the	simulation	results	for	the	stablecoin	price	deviations,	and	the	
resulting	Minting	Rate	and	Burn	Incentive	Rate.	

• The	minting	interest	rate	dynamically	adjusts	to	penalize	or	incentivize	new	
issuance	based	on	deviation	and	volatility.	

• The	burn	incentive	rate	increases	linearly	with	negative	deviation	to	encourage	
supply	contraction.	

• Combined,	these	rates	provide	an	algorithmic	policy	to	help	maintain	peg	stability.	

	

Figure.	2:	Simulation	results	for	peg	deviation,	minting	rate	and	burn	incentive.	

	



7. Simplified	Equation	Simulation	

In	an	 initial	 iteration	of	 the	pegging	mechanism,	we	can	create	a	 simplified	model	 for	 the	
minting	and	burning	rates.	This	ensures	the	stablecoin	can	be	launched	and	early	behavior	
assessed	and	monitored	 in	 the	simplified	case,	before	adjusting	model	and	calibrating	 the	
more	generalized	version	using	market	feedback.		

	

7.1 Simplified	Nonlinear	Model	Overview	
1. Deviation 

𝑥(𝑡) = 𝑃(𝑡) − 1. 

2. Minting Rate 

𝑟JKLM(𝑥) = �𝑟( + 𝑘 
|𝑥|,, 𝑥 < 0,

𝑟( − 𝑘 |𝑥|,, 𝑥 ≥ 0. 

3. Burn Incentive Rate 

𝑟NOPL(𝑥) = �𝑏 |𝑥|
Q , 𝑥 < 0,

0, 𝑥 ≥ 0. 

	

7.2 Simplified	Simulation	Equations	and	Parameters	

We simulate a continuous, nonlinear pegging policy with: 

• Deviation 𝑥(𝑡) = 𝑃(𝑡) − 1 driven by noise (𝜎 = 3%) plus four random −20% shocks. 
 

• Minting rate: 𝑟JKLM(𝑥) = �𝑟( + 𝑘 
|𝑥|A, 𝑥 < 0,

𝑟( − 𝑘 |𝑥|A, 𝑥 ≥ 0,
 [𝑟JKL, 𝑟JRS] = [0.25%, 50%]. 

 

• Burn incentive: 𝑟NOPL(𝑥) = �𝑏 |𝑥|
A, 𝑥 < 0,

0, 𝑥 ≥ 0, o [𝑟JKL, 𝑟JRS] = [0%, 50%]. 

	

Parameter Value Description 

𝑇 200 steps Total simulation length 

𝜎2 0.03 Deviation volatility (3 %) 

#shocks 4 Number of -20 % shocks 

shock_mag 0.20 Shock magnitude (20 %) 

𝑟( 0.01 (1 %) Base mint rate 

𝑘 5.0 Mint sensitivity 

𝑝 2 Mint exponent (convexity) 

[𝑟JKL, 𝑟JRS] [0.0025, 0.5] Mint rate bounds (0.25 %–50 %) 



𝑏 2.0 Burn sensitivity 

𝑞 2 Burn exponent 

𝑟5;"7,:92 0.50 Burn rate cap (50 %) 

 
7.3 Worked	Examples	

• At a deep negative shock 𝑥 = −0.20: 
 
𝑟JKLM = 1%+ 5 · (0.20)A = 1%+ 5 · 0.04 = 1%+ 0.20 = 21% (clamped to 50 %). 
 
𝑟NOPL = 2 · (0.20)A = 2 · 0.04 = 8%. 
 

• At a small positive deviation 𝑥 = 0.02: 
 
𝑟JKLM = 1%− 5 · (0.02)A = 1%− 5 · 0.0004 = 0.998% (≈1 %, floored at 0.25 %). 
 
𝑟NOPL = 0%. 

 
7.4 Comparison	to	Perpetual	Funding	

Feature Perpetual Swap This Peg Model 

Deviation 𝑃,6", − 𝑃$,-. 𝑃 − 1 = 𝑥 

Rate Adjustment 𝐹 = 𝜅 m𝑃,6", − 𝑃$,-.n 𝑟:+7. = 𝑟( − 𝑘|𝑥|A / 𝑟( + 𝑘 |𝑥|A 

Flat Dead Zone None (linear across 𝑥) Yes ( 1
12
𝑥A|2U( = 0) 

Additional Incentive Single funding flow Separate burn rebate lever 𝑟5;"7 

 
7.5 Simulation	Charts	
1. Deviation 𝑥(𝑡): random noise + four −20 % shocks. 

2. Minting Rate 𝑟JKLM(𝑡): flat near zero, spikes on large drops. 

3. Burn Rate 𝑟NOPL(𝑡): non‐zero only for 𝑥 < 0, convex response. 

 



 

 

7.6 Further	Work	

The	generalized	and	 simplified	 simulations	were	 conducted	as	 a	proof-of-concept	using	a	
carefully	 selected	 set	 of	 parameters	 that	 qualitatively	 reproduced	 the	 desired	 market	
characteristics—namely,	 bounded	 oscillations	 around	 the	 peg,	 controlled	 responses	 to	
shocks,	 and	 convergence	 back	 to	 equilibrium.	 These	 parameters	 were	 chosen	 based	 on	
theoretical	expectations	and	numerical	experimentation,	rather	than	empirical	calibration.	
While	the	results	demonstrate	the	feasibility	of	 the	proposed	mechanism	and	highlight	 its	
potential	 stability	 under	 baseline	 conditions,	 this	 preliminary	 setup	 remains	 illustrative	
rather	than	prescriptive.	

While	the	generalized	model	provides	much	finer	control	for	minting	and	burning	rates	in	
response	to	deviations	compared	to	the	simplified	mode,	the	differences	are	not	significant.	
So	in	the	early	launch	phase	to	minimize	complexity,	where	volume	will	be	lower,	and	likely	
lower	market	volatility,	the	simplified	model	would	be	suitable.		

To	transition	from	conceptual	demonstration	to	practical	deployment,	a	robust	calibration	
framework	 is	 necessary.	 This	 would	 involve	 estimating	 the	 key	 parameters—such	 as	



damping	 coefficients,	 restoring	 force	 multipliers,	 and	 scaling	 weights—using	 historical	
stablecoin	price	data	and	observed	liquidity	conditions	across	multiple	venues.	This	would	
also	help	provide	better	comparison	between	the	generalized	and	simplified	versions.			

Moreover,	extensive	robustness	testing	should	be	performed	to	assess	system	performance	
under	adverse	or	extreme	conditions.	This	includes:	

• Simulating	large,	clustered	redemption	events	or	liquidation	cascades,	
• Stress-testing	under	illiquid	markets	or	sudden	withdrawal	of	market	makers,	
• Testing	asymmetric	shocks	that	persist	over	extended	periods,	
• Incorporating	 agent-based	 behavior	 to	 capture	 heterogeneity	 in	 arbitrage	 access,	

transaction	costs,	or	latency.	

Such	extended	analysis	would	not	only	validate	the	effectiveness	of	the	dynamic	minting	and	
burn	mechanism	under	stress,	but	also	inform	the	safe	operational	bounds	and	contingency	
measures	for	real-world	protocol	implementation.	

	

8. Summary	

This	 work	 introduces	 a	 novel,	 principled,	 and	 dynamically	 adaptive	 mechanism	 for	
maintaining	the	peg	of	stablecoins	that	are	minted	and	burned	directly	on-chain	using	real-
world	asset	(RWA)	collateral—specifically	through	the	use	of	stripped	principal	components	
of	money	market	instruments	as	stablecoin	backing.	

By	structurally	decoupling	yield	from	principal	and	applying	a	calibrated	discount	and	fee	
haircut	 to	 reflect	 time	 and	 credit	 risk,	 the	 system	defines	 a	 stable	 residual	 value	 used	 as	
collateral	 for	minting.	On	top	of	 this	collateral	model,	a	mathematically	grounded	pegging	
framework	is	introduced	to	manage	both	incentive	structures	and	stochastic	price	behavior,	
ensuring	that	the	stablecoin	remains	anchored	at	its	$1	target.	

At	the	core	lies	a	second-order	nonlinear	stochastic	differential	equation	(SDE)	model	that	
captures	mean-reversion	dynamics,	momentum	effects,	oscillatory	behavior,	and	the	impact	
of	exogenous	market	shocks.	The	model’s	parameters	are	tightly	coupled	to	two	protocol-
level	 policy	 levers—the	minting	 interest	 rate	 and	 the	 burn	 incentive	 rate—which	 adjust	
endogenously	based	on	both	the	magnitude	and	velocity	of	price	deviations	from	the	peg.	The	
dynamics	are	further	grounded	in	an	intuitive	physical	analogy:	the	system	behaves	like	a	
damped	 simple	 harmonic	 oscillator	 subjected	 to	 stochastic	 and	 impulsive	 forces,	 where	
restoring	 forces	 and	 damping	 terms	 correspond	 to	 supply-side	 incentives	 that	 drive	 peg	
stabilization.	

Specifically,	 the	 minting	 interest	 rate	 increases	 when	 the	 price	 drops	 below	 the	 peg,	
discouraging	new	issuance	during	oversupply	regimes.	Concurrently,	the	burn	incentive	rate	
rises	 linearly	 with	 negative	 deviation,	 rewarding	 users	 for	 reducing	 circulating	 supply.	



Together,	 these	 two	 mechanisms	 generate	 dynamic	 damping	 and	 restoring	 forces	 that	
stabilize	the	system	across	a	range	of	market	conditions.	

Simulation	 results	 validate	 the	 model’s	 effectiveness	 in	 absorbing	 volatility,	 countering	
destabilizing	behaviors	such	as	looping-induced	depegs,	and	reestablishing	equilibrium	even	
under	stochastic	shocks.	This	design	advances	the	frontier	of	decentralized	monetary	policy	
by	providing	a	fully	on-chain,	algorithmic,	and	incentive-compatible	stablecoin	architecture.	

Future	 work	 may	 focus	 on	 refining	 the	 generalized	 model,	 calibrating	 parameters	 using	
empirical	market	data,	and	extending	simulations	to	include	agent-based	models	for	more	
realistic	 arbitrage	 dynamics.	 Nevertheless,	 the	 current	 formulation	 establishes	 a	 robust	
foundation	 for	 building	 stablecoins	 that	 are	 both	 financially	 sound	 and	 mathematically	
resilient.	
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