STBL Multi Factor Staking Framework Version 1

Dr. Avtar Sehra

1. Overview

This paper specifies a simple, tunable airdrop model for STBL that will operate before full staking emissions are enabled. In Version 1 (v1), only airdrops are active; the protocol uses this framework to distribute STBL to participants. In a future release, the base staking emissions will be switched on, and the airdrops/boosts defined here will sit on top of those staking emissions.

Each wallet's share of the airdrop is determined by a single weight, which is based on the following:

- Balances: the amount of STBL and USST held in the Multi Factor Staking (MFS) infrastructure,
- Time-lock Boost: the boost applied to staked STBL according to chosen lock term, and
- **Co-lock Boost:** a bounded logarithmic co-lock time boost that rewards holding USST alongside STBL, which prevents outsized advantages for USST relative to STBL.

The design goals for MFS were:

- Fairness: no runaway advantages; boosts are bounded and clearly capped.
- Capital efficiency: balanced incentives across STBL staking and USST co-locks.
- **Predictability:** smooth outcomes with stable parameters and simple update rules.
- Operational simplicity: closed-form calculations suitable for audits and user comms.

This interim airdrop framework enables STBL to launch MFS v1 quickly and safely. The official staking emission engine – including bootstrap, staking-driven, and terminal phases, as well as buybacks/burns and governance tuning – will follow in a subsequent version.

At a high level the MFS infrastructure operates in the following manner:

- A fixed airdrop emission E_{day} is split pro-rata by $\frac{w}{W_{base}+w}$, where W_{base} is the ecosystem's aggregate weight.
- Time commitments increase effective stake via a concave boost $\psi(\tau)$, delivering meaningful incentives for longer locks while preserving diminishing returns.

- USST co-locks increase weight through a bounded log boost $B_{log}(x)$. The coverage cap θ limits how much USST per unit STBL is credited, ensuring whales cannot overwhelm the system by attaching excessive USST to small STBL positions. The curvature κ_{boost} controls how quickly the boost approaches its ceiling, and β sets that ceiling.
- The final weight is $w = S_{eff} \cdot B_{log}(x)$. This single scalar drives allocation and is easy to model, simulate, and communicate.

As well as providing an overview of the framework and parameters, two worked examples follow: (A) STBL-only staking with a time-lock, and (B) a balanced STBL+USST position. They illustrate how θ , κ_{boost} , and W_{base} shape outcomes under realistic reference parameters.

2. Parameter & Equation Overview

Core stake Variables

S: amount of STBL staked (tokens).

 τ_S : time-lock (months) for S; allowed values {0,1,3,6,12}.

U: amount of USST co-locked (tokens).

 τ_U : time-lock (months) for *U*; allowed values {0,1,3,6,12}.

Airdrop Emissions

 E_{day} : fixed daily airdrop (tokens/day). Tokens/day (constant).

 W_{base} : baseline global weight from the rest of the ecosystem (dimensionless). This anchors prorata so a single new staker cannot swing distribution excessively. On-chain definition at time t:

$$W_{base}(t) = \Sigma_{j \neq i} \, S_{eff,j}(t) \, \cdot \, B_{log}(x_j(t))$$

In the below worked examples we use $W_{base} = 100,000,000$.

Policy Parameters

 κ_{time} : controls strength of time-lock boost; logarithmic so benefits diminish with longer locks.

 θ : USST coverage cap (max helpful USST per 1 STBL). Prevents whales from attaching arbitrarily large U to small S.

 κ_{boost} : curvature of log-boost; tunes sensitivity of the co-lock boost to coverage x.

 β : maximum incremental log-boost; ensures $B_{log}(x) \in [1, 1 + \beta]$ and prevents runaway advantages.

Framework & Equations

Time-lock boost:

$$\psi(\tau) = 1 + \kappa_{time} \cdot ln(1+\tau)$$

Effective stakes:

$$S_{eff} = S \cdot \psi(\tau_S), \qquad U_{eff} = U \cdot \psi(\tau_U)$$

Raw USST coverage ratio (pre-cap):

$$r = \frac{U}{\theta \cdot S}$$

Coverage used for boost (includes time-lock tilt, capped to 1):

$$x = min\left(r \cdot \frac{\psi(\tau_U)}{\psi(\tau_S)}, 1\right)$$

Logarithmic boost (monotone, capped at $1+\beta$):

$$B_{log}(x) = 1 + \beta \cdot \frac{ln(1 + \kappa_{boost} \cdot x)}{ln(1 + \kappa_{boost})}$$

Final weight and pro-rata airdrop:

$$w = S_{eff} \cdot B_{log}(x)$$

$$\frac{Airdrop}{day} = A_w = E_{day} \cdot \frac{w}{W_{base} + w}$$

Ranges & Example Parameters

$$\tau \in \{0,1,3,6,12\}, \quad \psi(\tau) \ge 1, \ x \in [0,1], \quad B_{log}(x) \in [1,1+\beta]$$

$$\kappa_{time} = 0.25, \quad \kappa_{boost} = 100, \quad \beta = 1, \quad \theta = 10$$

$$E_{day} = 5,000, W_{base} = 100,000,000$$

3. Worked Examples

Example 1 - STBL Only

Inputs: $S = 10,000, \tau_S = 3, U = 0.$

1. Time-lock boost on S

$$\psi(\tau_S) = 1 + 0.25 \cdot ln(4) \approx 1.3465735903$$

2. Effective stake

$$S_{eff} \approx 10,000 \cdot 1.3465735903 \approx 13,465.73590$$

3. Coverage and boost

$$x = 0, \qquad B_{log}(0) = 1$$

4. Weight and daily airdrop

$$w \approx 13,465.73590 \cdot 1. \approx 13,465.73590$$

$$A_w \approx 5,000 \cdot \frac{13,465.73590}{(100,000,000 + 13,465.73590)} \approx 0.6731961443$$

Example 2 - With USST Coverage

Inputs: $S = 10,000, \tau_S = 6, U = 50,000, \tau_U = 6.$

1. Time-lock boosts and effective stakes

$$\psi(6) = 1 + 0.25 \cdot ln(7) \approx 1.4864775373$$

 S_{eff} and U_{eff} :

$$S_{eff} \approx 10,000 \cdot 1.4864775373 = 14,864.77537,$$

$$U_eff \approx 50,000 \cdot 1.4864775373 = 74,323.87686$$

2. Coverage fraction

$$r = \frac{50,000}{10 \cdot 10.000} = 0.5$$

$$x = min\left(0.5 \cdot \frac{\psi(6)}{\psi(6)}, 1\right) = 0.5$$

3. Log boost

$$B_{log}(0.5) = 1 + \frac{ln(51)}{ln(101)} \approx 1.8519443032$$

4. Weight and daily airdrop

$$w \approx 14,864.77537 \cdot 1.8519443032 \approx 27,528.73607$$

$$A_w \approx 5,000 \cdot \frac{27,528.73607}{(100,000,000 + 27,528.73607)} \approx 1.3760579921$$

4. Simulation of A_w as a Function of S_{eff} and U_{eff}

5. Further Work

The focus of this work is to accelerate development and ship a reliable and robust MFS v1 so users can stake/lock/boost and receive rewards with clear rules. However, MFS v1 is temporary; the official emissions and long-term token mechanics will be driven by the full protocol design, which will be covered in the STBL whitepaper, and will be published soon. This will include the bootstrap + staking-driven + terminal emissions, buybacks/burns, governance tuning.

The key decisions and tasks to finalize v1 and move forward are as follows:

- MFS v1 Final Design: Current framework is being implemented and will be audited before launching beta version final implemented spec will be published.
- **Emission Policy:** Define total amount of rewards to be distributed per month, and how this will be changed e.g. constant, inflationary or hybrid depending on staked assets.
- Emission Caps & Bounds: Set E_{min} , E_{max} and day-over-day change limits for emissions, as well as transparent emergency pause policy.
- W_{base} Calculation: Publish how STBL measures and uses this in onchain staking calculations.
- Core Parameters: Define defaults for κ_{time} , κ_{boost} , θ , β and allowed lock terms $\{0, 1, 3, 6, 12 \ months\}$.
- Anti-gaming and Fairness: Stress-test scenarios (wallet splitting, timing/churn, sybil behavior), gather community feedback, and codify mitigations (minimum lock, cooldowns, snapshotting).
- USST Coverage Sanity: keep θ conservative at launch and monitor distribution of USST and STBL to detect leverage clusters and adjust if needed.
- **Parameter Governance:** List which knobs are upgradable in v1, which require governance, and which are frozen until v2.
- Operations Runbooks: incident playbook (oracle failure, abnormal staking surge), and rollback steps.
- **Versioned Upgrade Path:** Publish the full whitepaper and schedule transition milestones (v1.5 hardening, v2 with the official emission engine).